




Table 4.3 Steps in the Node-
Voltage Method and the Mesh-
Current Method



Analyzing a Circuit With an Ideal



OP AMP
1. Check for a negative feedback path. If it exists, assume the op amp

operates in its linear region.

2. Write a KCL equation at the inverting input terminal.

3. Solve the KCL equation and use the solution to find the op amp’s output
voltage.

4. Compare the op amp’s output voltage to the power supply voltages to
determine if the op amp is operating in its linear region or if it is
saturated.

General Method for Natural and
Step Response of RL and RC
Circuits

1. Identify the variable x(t), which is the inductor current for RL circuits
and capacitor voltage for RC circuits.

2. Calculate the initial value X0, by analyzing the circuit to find x(t) for
t<0

3. Calculate the time constant τ; for RL circuits τ=L/R and for RC
circuits τ=RC, where R is the equivalent resistance connected to the
inductor or capacitor for t≥0

4. Calculate the final value Xf, by analyzing the circuit to find x(t) as
t→∞; for the natural response, Xf=0

5. Write the equation for x(t), x(t)=Xf+(X0−Xf) e−t/τ, for t≥0.



6. Calculate other quantities of interest using x(t).

Natural Response of a Parallel RLC
Circuit

1. Determine the initial capacitor voltage (V0) and inductor current
(I0) from the circuit.

2. Determine the values of α and ω0 using the equations in Table 8.1.

3. If α2>ω02, the response is overdamped and v(t)=A1es1t+A2es2t,t≥0

4. If the response is overdamped, calculate s1 and s2 using the equations
in Table 8.1.

5. If the response is overdamped, calculate A1 and A2 by
simultaneously solving Eqs. 8.10 and 8.11.

6. Write the equation for v(t) from Step 3 using the results from Steps 4
and 5; find any desired branch currents.

Table 8.2 Equations for
analyzing the natural response
of parallel RLC circuits



(Note that the equations in the last three rows assume that the
reference direction for the current in every component is in the
direction of the reference voltage drop across that component.)

Step Response of a Parallel RLC



Circuit
1. Determine the initial capacitor voltage (V0), the initial inductor

current (I0), and the final inductor current (If) from the circuit.

2. Determine the values of α and ω0 using the equations in Table 8.3.

3. If α2>ω02, the response is overdamped and iL(t)=If+A′1es1t+A′2es2t,
t≥0+;

If α2>ω02 the response is underdamped and iL(t)=If+B′1e
−αtcosωdt+B′2e−αtsinωdt, t≥0+;

If α2=ω02, the response is critically damped and iL(t)=If+D′1te−αt+D
′2e−αt, t≥0+

4. If the response is overdamped, calculate s1 and s2 using the equations
in Table 8.3;

If the response is underdamped, calculate ωd using the equation in
Table 8.3.

5. If the response is overdamped, calculate A1′ and A2′ by
simultaneously solving the equations in Table 8.3;

If the response is underdamped, calculate B1′ and B2′ by
simultaneously solving the equations in Table 8.3;

If the response is critically damped, calculate D1′ and D2′ by
simultaneously solving the equations in Table 8.3.

6. Write the equation for iL(t) from Step 3 using the results from Steps 4
and 5; find the inductor voltage and any desired branch currents.

Table 8.3 Equations for



analyzing the step response of
parallel RLC circuits

(Note that the equations in the last three rows assume that the
reference direction for the current in every component is in the
direction of the reference voltage drop across that component.)
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Preface
The Eleventh Edition of Electric Circuits represents the most extensive
revision to the text since the Fifth Edition, published in 1996. Every sentence,
paragraph, subsection, and chapter has been examined to improve clarity,
readability, and pedagogy. Yet the fundamental goals of the text are
unchanged. These goals are:

To build new concepts and ideas on concepts previously presented. This
challenges students to see the explicit connections among the many
circuit analysis tools and methods.

To develop problem-solving skills that rely on a solid conceptual
foundation. This challenges students to examine many different
approaches to solving a problem before writing a single equation.

To introduce realistic engineering experiences at every opportunity. This
challenges students to develop the insights of a practicing engineer and
exposes them to practice of engineering.

Why This Edition?
The Eleventh Edition of Electric Circuits incorporates the following new and
revised elements:

Analysis Methods – This new feature identifies the steps needed to
apply a particular circuit analysis technique. Many students struggle just
to get started when analyzing a circuit, and the analysis methods will
reduce that struggle. Some of the analysis methods that are used most
often can be found inside the book’s covers for easy reference.

Examples – Many students rely on examples when developing and
refining their problem-solving skills. We identified many places in the
text that needed additional examples, and as a result the number of



examples has increased by nearly 35% to 200.

End-of-chapter problems – Problem solving is fundamental to the study
of circuit analysis. Having a wide variety of problems to assign and
work is a key to success in any circuits course. Therefore, some existing
end-of-chapter problems were revised, and some new end-of-chapter
problems were added. Approximately 30% of the problems in the
Eleventh Edition were rewritten.

Fundamental equations and concepts – These important elements in the
text were previously identified with margin notes. In this edition, the
margin notes have been replaced by a second-color background,
enlarged fonts, and a descriptive title for each fundamental equation and
concept. In additional, many equation numbers have been eliminated to
make it easier to distinguish fundamental equations from the many other
equations in the text.

Circuit simulation software – The PSpice® and Multisim® manuals have
been revised to include screenshots from the most recent versions of
these software simulation applications. Each manual presents the
simulation material in the same order as the material is encountered in
the text. These manuals include example simulations of circuits from the
text. Icons identify end-of-chapter problems that are good candidates for
simulation using either PSpice or Multisim.

Solving simultaneous equations – Most circuit analysis techniques in
this text eventually require you to solve two or more simultaneous linear
algebraic equations. Appendix A has been extensively revised and
includes examples of paper-and-pencil techniques, calculator
techniques, and computer software techniques.

Student workbook – Students who could benefit from additional
examples and practice problems can use the Student Workbook, which
has been revised for the Eleventh Edition of the text. This workbook has
examples and problems covering the following material: balancing
power, simple resistive circuits, node voltage method, mesh current
method, Thévenin and Norton equivalents, op amp circuits, first-order
circuits, second-order circuits, AC steady-state analysis, and Laplace



transform circuit analysis.

The Student Workbook now includes access to Video Solutions,
complete, step-by-step solution walkthroughs to representative
homework problems.

Learning Catalytics, a “bring your own device” student engagement,
assessment, and classroom intelligence system is available with the
Eleventh Edition. With Learning Catalytics you can:

Use open-ended questions to get into the minds of students to
understand what they do or don’t know and adjust lectures
accordingly.

Use a wide variety of question types to sketch a graph, annotate a
circuit diagram, compose numeric or algebraic answers, and more.

Access rich analytics to understand student performance.

Use pre-built questions or add your own to make Learning
Catalytics fit your course exactly.

Pearson Mastering Engineering is an online tutorial and assessment
program that provides students with personalized feedback and hints and
instructors with diagnostics to track students’ progress. With the
Eleventh Edition, Mastering Engineering will offer new enhanced end-
of-chapter problems with hints and feedback, Coaching Activities, and
Adaptive Follow-Up assignments. Visit www.masteringengineering.com
for more information.

Hallmark Features

Analysis Methods
Students encountering circuit analysis for the first time can benefit from step-

http://www.masteringengineering.com


by-step directions that lead them to a problem’s solution. We have compiled
these directions in a collection of analysis methods, and revised many of the
examples in the text to employ these analysis methods.



Chapter Problems
Users of Electric Circuits have consistently rated the Chapter Problems as
one of the book’s most attractive features. In the Eleventh Edition, there are
1185 end-of-chapter problems with approximately 30% that have been
revised from the previous edition. Problems are organized at the end of each
chapter by section.

Practical Perspectives
The Eleventh Edition continues using Practical Perspectives to introduce the
chapter. They provide real-world circuit examples, taken from real-world
devices. Every chapter begins by describing a practical application of the
material that follows. After presenting that material, the chapter revisits
the Practical Perspective, performing a quantitative circuit analysis using the
newly introduced chapter material. A special icon identifies end-of-chapter
problems directly related to the Practical Perspective application. These
problems provide additional opportunities for solving real-world problems
using the chapter material.

Assessment Problems
Each chapter begins with a set of chapter objectives. At key points in the
chapter, you are asked to stop and assess your mastery of a particular
objective by solving one or more assessment problems. The answers to all of
the assessment problems are given at the conclusion of each problem, so you
can check your work. If you are able to solve the assessment problems for a
given objective, you have mastered that objective. If you need more practice,
several end-of-chapter problems that relate to the objective are suggested at
the conclusion of the assessment problems.



Examples
Every chapter includes many examples that illustrate the concepts presented
in the text in the form of a numeric example. There are now nearly 200
examples in this text, an increase of about 35% when compared to the
previous edition. The examples illustrate the application of a particular
concept, often employ an Analysis Method, and exemplify good problem-
solving skills.

Fundamental Equations and
Concepts
Throughout the text, you will see fundamental equations and concepts set
apart from the main text. This is done to help you focus on some of the key
principles in electric circuits and to help you navigate through the important
topics.

Integration of Computer Tools
Computer tools can assist students in the learning process by providing a
visual representation of a circuit’s behavior, validating a calculated solution,
reducing the computational burden of more complex circuits, and iterating
toward a desired solution using parameter variation. This computational
support is often invaluable in the design process. The Eleventh Edition
supports PSpice and Multisim, both popular computer tools for circuit
simulation and analysis. Chapter problems suited for exploration with PSpice
and Multisim are marked accordingly.

Design Emphasis



The Eleventh Edition continues to support the emphasis on the design of
circuits in many ways. First, many of the Practical Perspective discussions
focus on the design aspects of the circuits. The accompanying Chapter
Problems continue the discussion of the design issues in these practical
examples. Second, design-oriented Chapter Problems have been labeled
explicitly, enabling students and instructors to identify those problems with a
design focus. Third, the identification of problems suited to exploration with
PSpice or Multisim suggests design opportunities using these software tools.
Fourth, some problems in nearly every chapter focus on the use of realistic
component values in achieving a desired circuit design. Once such a problem
has been analyzed, the student can proceed to a laboratory to build and test
the circuit, comparing the analysis with the measured performance of the
actual circuit.

Accuracy
All text and problems in the Eleventh Edition have undergone our strict
hallmark accuracy checking process, to ensure the most error-free book
possible.

Resources For Students
Mastering Engineering. Mastering Engineering provides tutorial homework
problems designed to emulate the instructor’s office hour environment,
guiding students through engineering concepts with self-paced individualized
coaching. These in-depth tutorial homework problems provide students with
feedback specific to their errors and optional hints that break problems down
into simpler steps. Visit www.masteringengineering.com for more
information.

Learning Catalytics. Learning Catalytics is an interactive student response
tool that encourages team-based learning by using student’s smartphones,
tablets, or laptops to engage them in interactive tasks and thinking. Visit
www.learningcatalytics.com for more information.

http://www.masteringengineering.com
http://www.learningcatalytics.com


Student Workbook. This resource teaches students techniques for solving
problems presented in the text. Organized by concepts, this is a valuable
problem-solving resource for all levels of students. The Student Workbook
now includes access to Video Solutions, complete, step-by-step solution
walkthroughs to representative homework problems.

Introduction to Multisim and Introduction to PSpice Manuals—Updated for
the Eleventh Edition, these manuals are excellent resources for those wishing
to integrate PSpice or Multisim into their classes.

Resources for Instructors
All instructor resources are available for download at
www.pearsonhighered.com. If you are in need of a login and password for
this site, please contact your local Pearson representative.

Instructor Solutions Manual—Fully worked-out solutions to Assessment
Problems and end-of-chapter problems.

PowerPoint lecture images—All figures from the text are available in
PowerPoint for your lecture needs. An additional set of full lecture slides
with embedded assessment questions are available upon request.

MasteringEngineering. This online tutorial and assessment program allows
you to integrate dynamic homework with automated grading and
personalized feedback. MasteringEngineering allows you to easily track the
performance of your entire class on an assignment-by-assignment basis, or
the detailed work of an individual student. For more information visit
www.masteringengineering.com.

Learning Catalytics—This “bring your own device” student engagement,
assessment and classroom intelligence system enables you to measure student
learning during class, and adjust your lectures accordingly. A wide variety of
question and answer types allows you to author your own questions, or you
can use questions already authored into the system. For more information
visit www.learningcatalytics.com or click on the Learning Catalytics link

http://www.pearsonhighered.com
http://www.learningcatalytics.com


inside Mastering Engineering.

Prerequisites
In writing the first 12 chapters of the text, we have assumed that the reader
has taken a course in elementary differential and integral calculus. We have
also assumed that the reader has had an introductory physics course, at either
the high school or university level, that introduces the concepts of energy,
power, electric charge, electric current, electric potential, and electromagnetic
fields. In writing the final six chapters, we have assumed the student has had,
or is enrolled in, an introductory course in differential equations.

Course Options
The text has been designed for use in a one-semester, two-semester, or a
three-quarter sequence.

Single-semester course: After covering Chapters 1–4 and Chapters 6–10
(omitting Sections 7.7 and 8.5) the instructor can develop the desired
emphasis by covering Chapter 5 (operational amplifiers), Chapter 11
(three-phase circuits), Chapters 13 and 14 (Laplace methods), or Chapter
18 (Two-Port Circuits).

Two-semester sequence: Assuming three lectures per week, cover the
first nine chapters during the first semester, leaving Chapters 10–18 for
the second semester.

Academic quarter schedule: Cover Chapters 1–6 in the first quarter,
Chapters 7–12 in the second quarter, and Chapters 13–18 in the third
quarter.

Note that the introduction to operational amplifier circuits in Chapter 5 can be
omitted with minimal effect on the remaining material. If Chapter 5 is
omitted, you should also omit Section 7.7, Section 8.5, Chapter 15, and those
assessment problems and end-of-chapter problems that pertain to operational



amplifiers.

There are several appendixes at the end of the book to help readers make
effective use of their mathematical background. Appendix A presents several
different methods for solving simultaneous linear equations; complex
numbers are reviewed in Appendix B; Appendix C contains additional
material on magnetically coupled coils and ideal transformers; Appendix D
contains a brief discussion of the decibel; Appendix E is dedicated to Bode
diagrams; Appendix F is devoted to an abbreviated table of trigonometric
identities that are useful in circuit analysis; and an abbreviated table of useful
integrals is given in Appendix G. Appendix H provides tables of common
standard component values for resistors, inductors, and capacitors, to be used
in solving many end-of-chapter problems. Selected Answers provides
answers to selected end-of-chapter problems.
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Chapter Objectives
1. Understand and be able to use SI units and the standard prefixes for

powers of 10.

2. Know and be able to use the definitions of voltage and current.

3. Know and be able to use the definitions of power and energy.

4. Be able to use the passive sign convention to calculate the power for an
ideal basic circuit element given its voltage and current.

Electrical engineering is an exciting and challenging profession for anyone
who has a genuine interest in, and aptitude for, applied science and
mathematics. Electrical engineers play a dominant role in developing systems
that change the way people live and work. Satellite communication links, cell
phones, computers, televisions, diagnostic and surgical medical equipment,
robots, and aircraft represent systems that define a modern technological
society. As an electrical engineer, you can participate in this ongoing
technological revolution by improving and refining existing systems and by
discovering and developing new systems to meet the needs of our ever-
changing society.

This text introduces you to electrical engineering using the analysis and
design of linear circuits. We begin by presenting an overview of electrical
engineering, some ideas about an engineering point of view as it relates to
circuit analysis, and a review of the International System of Units. We then
describe generally what circuit analysis entails. Next, we introduce the
concepts of voltage and current. We continue by discussing the ideal basic
element and the need for a polarity reference system. We conclude the
chapter by describing how current and voltage relate to power and energy.

Practical Perspective



Balancing Power
One of the most important skills you will develop is the ability to check your
answers for the circuits you design and analyze using the tools developed in
this text. A common method used to check for valid answers is to calculate
the power in the circuit. The linear circuits we study have no net power, so
the sum of the power associated with all circuit components must be zero. If
the total power for the circuit is zero, we say that the power balances, but if
the total power is not zero, we need to find the errors in our calculation.

As an example, we will consider a simple model for distributing electricity to
a typical home. (Note that a more realistic model will be investigated in the
Practical Perspective for Chapter 9.) The components labeled a and b
represent the source of electrical power for the home. The components
labeled c, d, and e represent the wires that carry the electrical current from the
source to the devices in the home requiring electrical power. The components
labeled f, g, and h represent lamps, televisions, hair dryers, refrigerators, and
other devices that require power.



romakoma/Shutterstock



PhotoSerg/Shutterstock

Once we have introduced the concepts of voltage, current, power, and energy,
we will examine this circuit model in detail, and use a power balance to
determine whether the results of analyzing this circuit are correct.
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1.1 Electrical Engineering: An
Overview
The electrical engineering profession focuses on systems that produce,
transmit, and measure electric signals. Electrical engineering combines the
physicist’s models of natural phenomena with the mathematician’s tools for
manipulating those models to produce systems that meet practical needs.
Electrical systems pervade our lives; they are found in homes, schools,
workplaces, and transportation vehicles everywhere. We begin by presenting
a few examples from each of the five major classifications of electrical
systems:

communication systems

computer systems

control systems

power systems

signal-processing systems

Then we describe how electrical engineers analyze and design such systems.

Communication systems are electrical systems that generate, transmit, and
distribute information. Well-known examples include television equipment,
such as cameras, transmitters, receivers, and monitors; radio telescopes, used
to explore the universe; satellite systems, which return images of other
planets and our own; radar systems, used to coordinate plane flights; and
telephone systems.

Figure 1.1 depicts the major components of a modern telephone system that
supports mobile phones, landlines, and international calling. Inside a
telephone, a microphone turns sound waves into electric signals. These
signals are carried to local or mobile exchanges, where they are combined



with the signals from tens, hundreds, or thousands of other telephones. The
form of the signals can be radio waves traveling through air, electrical signals
traveling in underground coaxial cable, light pulses traveling in fiber-optic
cable, or microwave signals that travel through space. The combined signals
are broadcast from a transmission antenna to a receiving antenna. There the
combined signals are separated at an exchange, and each is routed to the
appropriate telephone, where an earphone acts as a speaker to convert the
received electric signals back into sound waves. At each stage of the process,
electric circuits operate on the signals. Imagine the challenge involved in
designing, building, and operating each circuit in a way that guarantees that
all of the hundreds of thousands of simultaneous calls have high-quality
connections.

Figure 1.1 A telephone system.





Figure 1.1 Full Alternative Text

Computer systems use electric signals to process information ranging from
word processing to mathematical computations. Systems range in size and
power from simple calculators to personal computers to supercomputers that
perform such complex tasks as processing weather data and modeling
chemical interactions of complex organic molecules. These systems include
networks of integrated circuits—miniature assemblies of hundreds,
thousands, or millions of electrical components that often operate at speeds
and power levels close to fundamental physical limits, including the speed of
light and the thermodynamic laws.

Control systems use electric signals to regulate processes. Examples include
the control of temperatures, pressures, and flow rates in an oil refinery; the
fuel–air mixture in a fuel-injected automobile engine; mechanisms such as
the motors, doors, and lights in elevators; and the locks in the Panama Canal.
The autopilot and autolanding systems that help to fly and land airplanes are
also familiar control systems.

Power systems generate and distribute electric power. Electric power, which
is the foundation of our technology-based society, usually is generated in
large quantities by nuclear, hydroelectric, solar, and thermal (coal-, oil-, or
gas-fired) generators. Power is distributed by a grid of conductors that
crisscross the country. A major challenge in designing and operating such a
system is to provide sufficient redundancy and control so that failure of any
piece of equipment does not leave a city, state, or region completely without
power.

Signal-processing systems act on electric signals that represent information.
They transform the signals and the information contained in them into a more
suitable form. There are many different ways to process the signals and their
information. For example, image-processing systems gather massive
quantities of data from orbiting weather satellites, reduce the amount of data
to a manageable level, and transform the remaining data into a video image
for the evening news broadcast. A magnetic resonance imaging (MRI) scan is
another example of an image-processing system. It takes signals generated by
powerful magnetic fields and radio waves and transforms them into a



detailed, three-dimensional image such as the one shown in Fig. 1.2, which
can be used to diagnose disease and injury.

Figure 1.2 An MRI scan of an
adult knee joint.
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Considerable interaction takes place among the engineering disciplines
involved in designing and operating these five classes of systems. Thus,
communications engineers use digital computers to control the flow of
information. Computers contain control systems, and control systems contain
computers. Power systems require extensive communications systems to
coordinate safely and reliably the operation of components, which may be
spread across a continent. A signal-processing system may involve a
communications link, a computer, and a control system.

A good example of the interaction among systems is a commercial airplane,
such as the one shown in Fig. 1.3. A sophisticated communications system
enables the pilot and the air traffic controller to monitor the plane’s location,
permitting the air traffic controller to design a safe flight path for all of the
nearby aircraft and enabling the pilot to keep the plane on its designated path.
An onboard computer system manages engine functions, implements the
navigation and flight control systems, and generates video information
screens in the cockpit. A complex control system uses cockpit commands to
adjust the position and speed of the airplane, producing the appropriate
signals to the engines and the control surfaces (such as the wing flaps,
ailerons, and rudder) to ensure the plane remains safely airborne and on the
desired flight path. The plane must have its own power system to stay aloft
and to provide and distribute the electric power needed to keep the cabin
lights on, make the coffee, and activate the entertainment system. Signal-
processing systems reduce the noise in air traffic communications and
transform information about the plane’s location into the more meaningful
form of a video display in the cockpit. Engineering challenges abound in the
design of each of these systems and their integration into a coherent whole.
For example, these systems must operate in widely varying and unpredictable
environmental conditions. Perhaps the most important engineering challenge
is to guarantee that sufficient redundancy is incorporated in the designs,
ensuring that passengers arrive safely and on time at their desired
destinations.



Figure 1.3 Interacting systems
on a commercial aircraft.
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Although electrical engineers may be interested primarily in one area, they
must also be knowledgeable in other areas that interact with this area of
interest. This interaction is part of what makes electrical engineering a
challenging and exciting profession. The emphasis in engineering is on
making things work, so an engineer is free to acquire and use any technique
from any field that helps to get the job done.

Circuit Theory
An electric circuit is a mathematical model that approximates the behavior
of an actual electrical system. Since electric circuits are found in every
branch of electrical engineering, they provide an important foundation for
learning how to design and operate systems such as those just described. The
models, the mathematical techniques, and the language of circuit theory will
form the intellectual framework for your future engineering endeavors.

Note that the term electric circuit is commonly used to refer to an actual
electrical system as well as to the model that represents it. In this text, when
we talk about an electric circuit, we always mean a model, unless otherwise
stated. It is the modeling aspect of circuit theory that has broad applications
across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the study of
static and moving electric charges. But applying generalized field theory to
the study of electric signals is cumbersome and requires advanced
mathematics. Consequently, a course in electromagnetic field theory is not a
prerequisite to understanding the material in this book. We do, however,
assume that you have had an introductory physics course in which electrical
and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than
electromagnetic field theory, to study a physical system represented by an
electric circuit.



1. Electrical effects happen instantaneously throughout a system. We can
make this assumption because we know that electric signals travel at or
near the speed of light. Thus, if the system is physically small, electric
signals move through it so quickly that we can consider them to affect
every point in the system simultaneously. A system that is small enough
so that we can make this assumption is called a lumped-parameter
system.

2. The net charge on every component in the system is always zero. Thus,
no component can collect a net excess of charge, although some
components, as you will learn later, can hold equal but opposite
separated charges.

3. There is no magnetic coupling between the components in a system. As
we demonstrate later, magnetic coupling can occur within a component.

That’s it; there are no other assumptions. Using circuit theory provides
simple solutions (of sufficient accuracy) to problems that would become
hopelessly complicated if we were to use electromagnetic field theory. These
benefits are so great that engineers sometimes specifically design electrical
systems to ensure that these assumptions are met. The importance of
assumptions 2 and 3 becomes apparent after we introduce the basic circuit
elements and the rules for analyzing interconnected elements.

Let’s take a closer look at assumption 1. The question is, “How small does a
physical system have to be to qualify as a lumped-parameter system?” To get
a quantitative answer to this question, remember that electric signals
propagate as waves. If the wavelength of the signal is large compared to the
physical dimensions of the system, we have a lumped-parameter system. The
wavelength λ is the velocity divided by the repetition rate, or frequency, of
the signal; that is, λ=c/f . The frequency f is measured in hertz (Hz). For
example, power systems in the United States operate at 60 Hz. If we use the
speed of light (c=3×108 m/s) as the velocity of propagation, the wavelength is
5×106 m. If the power system of interest is physically smaller than this
wavelength, we can represent it as a lumped-parameter system and use circuit
theory to analyze its behavior. How do we define smaller? A good rule is the
rule of 1/10th: If the dimension of the system is less than 1/10th the
dimension of the wavelength, you have a lumped-parameter system. Thus, as



long as the physical dimension of the power system is less than 5×105 m
(which is about 310 miles), we can treat it as a lumped-parameter system.

Now consider a communication system that sends and receives radio signals.
The propagation frequency of radio signals is on the order of 109 Hz, so the
wavelength is 0.3 m. Using the rule of 1N10th, a communication system
qualifies as a lumped-parameter system if its dimension is less than 3 cm.
Whenever any of the pertinent physical dimensions of a system under study
approaches the wavelength of its signals, we must use electromagnetic field
theory to analyze that system. Throughout this book we study circuits derived
from lumped-parameter systems.

Problem Solving
As a practicing engineer, you will not be asked to solve problems that have
already been solved. Whether you are improving the performance of an
existing system or designing a new system, you will be working on unsolved
problems. As a student, however, you will read and discuss problems with
known solutions. Then, by solving related homework and exam problems on
your own, you will begin to develop the skills needed to attack the unsolved
problems you’ll face as a practicing engineer.

Let’s review several general problem-solving strategies. Many of these
pertain to thinking about and organizing your solution strategy before
proceeding with calculations.

1. Identify what’s given and what’s to be found. In problem solving, you
need to know your destination before you can select a route for getting
there. What is the problem asking you to solve or find? Sometimes the
goal of the problem is obvious; other times you may need to paraphrase
or make lists or tables of known and unknown information to see your
objective.

On one hand, the problem statement may contain extraneous
information that you need to weed out before proceeding. On the other
hand, it may offer incomplete information or more complexities than can



be handled by the solution methods you know. In that case, you’ll need
to make assumptions to fill in the missing information or simplify the
problem context. Be prepared to circle back and reconsider supposedly
extraneous information and/or your assumptions if your calculations get
bogged down or produce an answer that doesn’t seem to make sense.

2. Sketch a circuit diagram or other visual model. Translating a verbal
problem description into a visual model is often a useful step in the
solution process. If a circuit diagram is already provided, you may need
to add information to it, such as labels, values, or reference directions.
You may also want to redraw the circuit in a simpler, but equivalent,
form. Later in this text you will learn the methods for developing such
simplified equivalent circuits.

3. Think of several solution methods and decide on a way of choosing
among them. This course will help you build a collection of analytical
tools, several of which may work on a given problem. But one method
may produce fewer equations to be solved than another, or it may
require only algebra instead of calculus to reach a solution. Such
efficiencies, if you can anticipate them, can streamline your calculations
considerably. Having an alternative method in mind also gives you a
path to pursue if your first solution attempt bogs down.

4. Calculate a solution. Your planning up to this point should have helped
you identify a good analytical method and the correct equations for the
problem. Now comes the solution of those equations. Paper-and-pencil,
calculator, and computer methods are all available for performing the
actual calculations of circuit analysis. Efficiency and your instructor’s
preferences will dictate which tools you should use.

5. Use your creativity. If you suspect that your answer is off base or if the
calculations seem to go on and on without moving you toward a
solution, you should pause and consider alternatives. You may need to
revisit your assumptions or select a different solution method. Or you
may need to take a less conventional problem-solving approach, such as
working backward from a solution. This text provides answers to all of
the Assessment Problems and many of the Chapter Problems so that you
may work backward when you get stuck. In the real world, you won’t be



given answers in advance, but you may have a desired problem outcome
in mind from which you can work backward. Other creative approaches
include allowing yourself to see parallels with other types of problems
you’ve successfully solved, following your intuition or hunches about
how to proceed, and simply setting the problem aside temporarily and
coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve obtained
makes sense. Does the magnitude of the answer seem reasonable? Is the
solution physically realizable? Are the units correct? You may want to
rework the problem using an alternative method to validate your original
answer and help you develop your intuition about the most efficient
solution methods for various kinds of problems. In the real world,
safety-critical designs are always checked by several independent
means. Getting into the habit of checking your answers will benefit you
both as a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every
problem in this or any other course. You may need to skip, change the order
of, or elaborate on certain steps to solve a particular problem. Use these steps
as a guideline to develop a problem-solving style that works for you.



1.2 The International System of
Units
Engineers use quantitative measures to compare theoretical results to
experimental results and compare competing engineering designs. Modern
engineering is a multidisciplinary profession in which teams of engineers
work together on projects, and they can communicate their results in a
meaningful way only if they all use the same units of measure. The
International System of Units (abbreviated SI) is used by all the major
engineering societies and most engineers throughout the world; hence we use
it in this book.

The SI units are based on seven defined quantities:

length

mass

time

electric current

thermodynamic temperature

amount of substance

luminous intensity

These quantities, along with the basic unit and symbol for each, are listed in
Table 1.1. Although not strictly SI units, the familiar time units of minute (60
s), hour (3600 s), and so on are often used in engineering calculations. In
addition, defined quantities are combined to form derived units. Some
quantities, such as force, energy, power, and electric charge, you already
know through previous physics courses. Table 1.2 lists the derived units used
in this book.



Table 1.1 The International
System of Units (SI)
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Table 1.2 Derived Units in SI
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In many cases, the SI unit is either too small or too large to use conveniently.
Standard prefixes corresponding to powers of 10, as listed in Table 1.3, are
then applied to the basic unit. Engineers often use only the prefixes for
powers divisible by 3; thus centi, deci, deka, and hecto are used rarely. Also,
engineers often select the prefix that places the base number in the range
between 1 and 1000. Suppose that a time calculation yields a result of 10−5 s,
that is, 0.00001 s. Most engineers would describe this quantity as 10 μs, that
is, 10−5=10×10−6 s, rather than as 0.01 ms or 10,000 ns.



Table 1.3 Standardized
Prefixes to Signify Powers of 10
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Example 1.1 illustrates a method for converting from one set of units to
another and also uses power-of-10 prefixes.

Example 1.1 Using SI Units and
Prefixes for Powers of 10
If a signal can travel in a cable at 80% of the speed of light, what length of
cable, in inches, represents 1 ns?

Solution
First, note that 1 ns=10−9 s. Also, recall that the speed of light c=3×108 m/s.
Then, 80% of the speed of light is 0.8c=(0.8)(3×108)=2.4×108 m/s. Using a
product of ratios, we can convert 80% of the speed of light from meters per
second to inches per nanosecond. The result is the distance in inches traveled
in 1 nanosecond:

2.4× 10 8  meters 1 second ⋅ 1 second 10 9  nanoseconds ⋅ 100 centimeters
1 meter ⋅ 1 inch 2.54 centimeters =9.45 inches/nanosecond.

Therefore, a signal traveling at 80% of the speed of light will cover 9.45
inches of cable in 1 nanosecond.

Assessment Problems
Objective 1—Understand and be able to use SI units and the standard



prefixes for powers of 10

1. 1.1 Assume a telephone signal travels through a cable at two-thirds the
speed of light. How long does it take the signal to get from New York
City to Miami if the distance is approximately 1100 miles?

Answer: 8.85 ms.

2. 1.2 How many dollars per millisecond would the federal government
have to collect to retire a deficit of $100 billion in one year?

Answer: $3.17/ms.

SELF-CHECK: Also try Chapter Problems 1.2, 1.3, and 1.6.



1.3 Circuit Analysis: An Overview
We look broadly at engineering design, specifically the design of electric
circuits, before becoming involved in the details of circuit analysis. This
overview provides you with a perspective on where circuit analysis fits
within the whole of circuit design. Even though this book focuses on circuit
analysis, we try to provide opportunities for circuit design where appropriate.

All engineering designs begin with a need 1, as shown in Fig. 1.4. This need
may come from the desire to improve on an existing design, or it may be
something brand new. A careful assessment of the need results in design
specifications, which are measurable characteristics of a proposed design.
Once a design is proposed, the design specifications 2 allow us to assess
whether or not the design actually meets the need.

Figure 1.4 A conceptual model
for electrical engineering
design.





Figure 1.4 Full Alternative Text

A concept 3 for the design comes next. The concept derives from a complete
understanding of the design specifications coupled with an insight into the
need, which comes from education and experience. The concept may be
realized as a sketch, as a written description, or as some other form. Often the
next step is to translate the concept into a mathematical model. A commonly
used mathematical model for electrical systems is a circuit model 4.

The elements that make up the circuit model are called ideal circuit
components. An ideal circuit component is a mathematical model of an
actual electrical component, like a battery or a light bulb. The ideal circuit
components used in a circuit model should represent the behavior of the
actual electrical components to an acceptable degree of accuracy. The tools of
circuit analysis 5, the focus of this book, are then applied to the circuit.
Circuit analysis uses mathematical techniques to predict the behavior of the
circuit model and its ideal circuit components. A comparison between the
desired behavior, from the design specifications, and the predicted behavior,
from circuit analysis, may lead to refinements in the circuit model and its
ideal circuit elements. Once the desired and predicted behaviors are in
agreement, a physical prototype 6 can be constructed.

The physical prototype is an actual electrical system, constructed from
actual electrical components. Measurements determine the quantitative
behavior of the physical system. This actual behavior is compared with the
desired behavior from the design specifications and the predicted behavior
from circuit analysis. The comparisons may result in refinements to the
physical prototype, the circuit model, or both. This iterative process, in which
models, components, and systems are continually refined, usually produces a
design that accurately satisfies the design specifications and thus meets the
need.

Circuit analysis clearly plays a very important role in the design process.
Because circuit analysis is applied to circuit models, practicing engineers try
to use mature circuit models so that the resulting designs will meet the design
specifications in the first iteration. In this book, we use models that have been
tested for at least 40 years; you can assume that they are mature. The ability



to model actual electrical systems with ideal circuit elements makes circuit
theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be used to
quantitatively predict the behavior of a system implies that we can describe
the interconnection with mathematical equations. For the mathematical
equations to be useful, we must write them in terms of measurable quantities.
In the case of circuits, these quantities are voltage and current, which we
discuss in Section 1.4. The study of circuit analysis involves understanding
the behavior of each ideal circuit element in terms of its voltage and current
and understanding the constraints imposed on the voltage and current as a
result of interconnecting the ideal elements.



1.4 Voltage and Current
The concept of electric charge is the basis for describing all electrical
phenomena. Let’s review some important characteristics of electric charge.

Electric charge is bipolar, meaning that electrical effects are described in
terms of positive and negative charges.

Electric charge exists in discrete quantities, which are integer multiples
of the electronic charge, 1.6022×10−19 C.

Electrical effects are attributed to both the separation of charge and
charges in motion.

In circuit theory, the separation of charge creates an electric force (voltage),
and the motion of charge creates an electric fluid (current).

The concepts of voltage and current are useful from an engineering point of
view because they can be expressed quantitatively. Whenever positive and
negative charges are separated, energy is expended. Voltage is the energy per
unit charge created by the separation. We express this ratio in differential
form as

Definition of Voltage
v=dwdq, (1.1)

where

v=the voltage in volts,w=the energy in joules,q=the charge in coulombs.

The electrical effects caused by charges in motion depend on the rate of
charge flow. The rate of charge flow is known as the electric current, which
is expressed as



Definition of Current
i=dqdt, (1.2)

where

i=the current in amperes,q=the charge in coulombs,t=the time in seconds.

Equations 1.1 and 1.2 define the magnitude of voltage and current,
respectively. The bipolar nature of electric charge requires that we assign
polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete moving electrons, we do not need to
consider them individually because of the enormous number of them. Rather,
we can think of electrons and their corresponding charge as one smoothly
flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a component
strictly in terms of the voltage and current at its terminals. Thus, two
physically different components could have the same relationship between
the terminal voltage and terminal current. If they do, for purposes of circuit
analysis, they are identical. Once we know how a component behaves at its
terminals, we can analyze its behavior in a circuit. However, when
developing component models, we are interested in a component’s internal
behavior. We might want to know, for example, whether charge conduction
is taking place because of free electrons moving through the crystal lattice
structure of a metal or whether it is because of electrons moving within the
covalent bonds of a semiconductor material. These concerns are beyond the
realm of circuit theory, so in this book we use component models that have
already been developed.



1.5 The Ideal Basic Circuit Element
An ideal basic circuit element has three attributes.

1. It has only two terminals, which are points of connection to other circuit
components.

2. It is described mathematically in terms of current and/or voltage.

3. It cannot be subdivided into other elements.

Using the word ideal implies that a basic circuit element does not exist as a
realizable physical component. Ideal elements can be connected in order to
model actual devices and systems, as we discussed in Section 1.3. Using the
word basic implies that the circuit element cannot be further reduced or
subdivided into other elements. Thus, the basic circuit elements form the
building blocks for constructing circuit models, but they themselves cannot
be modeled with any other type of element.

Figure 1.5 represents an ideal basic circuit element. The box is blank because
we are making no commitment at this time as to the type of circuit element it
is. In Fig. 1.5, the voltage across the terminals of the box is denoted by v, and
the current in the circuit element is denoted by i. The plus and minus signs
indicate the polarity reference for the voltage, and the arrow placed alongside
the current indicates its reference direction. Table 1.4 interprets the voltage
polarity and current direction, given positive or negative numerical values of
v and i. Note that algebraically the notion of positive charge flowing in one
direction is equivalent to the notion of negative charge flowing in the
opposite direction.

Figure 1.5 An ideal basic
circuit element.


